
HAVING A WORKING SOFTWARE IS
NOT ENOUGH
THOUGHTS ABOUT SOFTWARE DESIGN

Lic. Yanet Morales

yanet.morales@improving.com
https://www.linkedin.com/in/yanetmoralesr

01. Bachelor degree in
Computer Science

02. Developer, Scrum Master,
Product Owner

03. Technical Delivery Manager
at Improving Mexico

04. PSM II, PSPO II,
PSK I, PSU I, SPS, PSFS

ABOUT ME

AGENDA

WHAT IS AGILE?

CODEBASE ANALYSIS

CODEBASE QUALITY

Change amplification:
A simple change requires code modifications
in many places.

Cognitive load:
How much a developer needs to know about
the code to complete a task?

Unknown unknows:
There is something you need to know, but
there is no way for you to find out what it is, or
even, whether there is an issue.

WHAT IS AGILE?1

ANALYZE

TIME

Not Working Software/Product/Solution

DESIGN BUILD TEST RELEASE

VALUE

TRADITIONAL APPROACH

DESIGN
BUILD
TEST

EMPIRICAL PROCESS

Value

DESIGN
BUILD
TEST

DESIGN
BUILD
TESTValue Value

Value

Value

Value

Value

ANALYZE RELEASE ANALYZE RELEASE ANALYZE RELEASE

TIME

AGILE APPROACH

H O W D O E S

Y O U R

C O D E B A S E

L O O K ?

High code complexity?

Business logic in the
wrong places?

Unreadable names
or algorithms?

Highly coupled code?

Combination of legacy
and new applications?

Having a working software
is not enough!

Responding rapid to
change is not enough!

RAISING
THE BAR

Individuals and interactions

Working software

Customer collaboration

Responding to change

Processes and tools

Comprehensive
documentation

Contract negotiation

Following a plan

A community of professionals

AGILE MANIFESTO
(2001)

MANIFESTO FOR SOFTWARE
CRAFTSMANSHIP (2009)

Well crafted software

Productive partnerships

Steadily adding value

CODEBASE ANALYSIS2

John Ousterhout, A philosophy of Software Design, 2018

IS YOUR CODE COMPLEX?

"Complexity is anything related to the
structure of a software system that
makes it hard to understand and
modify"

It takes a lot of work to implement
even small improvements.

The incremental nature of complexity
makes it hard to control

Complexity makes it difficult and
risky to modify an existing code base

 Symptoms of code complexity:

John Ousterhout, A philosophy of Software Design, 2018

Change amplification:
A simple change requires code
modifications in many places.

Cognitive load:
How much a developer needs to know
about the code to complete a task?

Unknown unknows:
There is something you need to know,
but there is no way for you to find out
what it is, or even, whether there is an
issue.

WHAT IS THE SMELL OF YOUR CODEBASE?

SMELLS WITHIN CLASSES SMELLS BETWEEN CLASSES

Measured smells
• Comments • Long method
• Large class • Long parameter list

Names
• Type embedded in name
• Uncommunicative name
• Inconsistent names

Unnecessary complexity
• Dead code • Speculative generality

Duplication
• Magic numbers • Duplicated code
• Alternative classes with different interfaces.

Conditional logic
• Null check • Special case
• Complicated boolean expression
• Simulated inheritance (Switch statement)

Data
• Primitive obsession • Data class
• Data clump • Temporary field

Inheritance
• Refused bequest • Lazy class
• Inappropriate intimacy (Subclass Form)

Responsibility
• Feature envy • Middle man
• Message chains
• Inappropriate intimacy (General Form)

Accommodating change
• Divergent change • Shotgun surgery
• Parallel inheritance hierarchies
• Combinatorial explosion

Library classes
• Incomplete library class

William C. Wake, Refactoring Workbook, 2003

Smells (especially code smells) are warning signs about potential problems in code. Not all smells indicate a problem,
but most are worthy of a look and a decision.

01. High code complexity

02. Business logic in the
wrong places

03. Unreadable names
or algorithms

01. Improper software
customization

02. Releases with lots of
bugs

03. Lack of unit tests

01. Prioritization of product
constraints, like deadlines,
over code design

02. To many steps in the
process

03. Manual approval steps
that are not reviewed

04. Highly coupled code 04. Lack of automated
deployment

04. High business logic
complexity

05. Combination of
legacy and new
applications

05. Lack of automated
build

SOFTWARE DESIGN TECHNICAL PRACTICES BUSINESS DECISIONS

Martin Fowler, TechDebt Quadrant

TECHNICAL DEBT: IT 'S NOT JUST ABOUT CODING

HOW DO YOU KNOW THAT THE CODE YOU ARE
WRITING HAS GOOD QUALITY?

SAMPLE

CODEBASE QUALITY3

Software Design

Software
Architecture

• Readability

• Portability

• Modularity

• Scalability

• Maintainability

• Compatibility

• Fault-tolerance

• Robustness

• Extensibility

• Reusability

• Security

• Performance

• Usability

• Reliability

Decisions
regarding with
code structure

Decisions that
are hard to be
changed later

High cost
High risk

SOME WORDS ABOUT SOFTWARE DESIGN.. .

REMOVE THE SMELL OF YOUR CODE

Code Smells
Simple Smells
(magic numbers,
long parameter list,
etc)
Composite Smells
(God Class/Large
Class, Blobs, etc)
Approaches to
Detect (metrics,
strategies/rules, etc)
Support Tools

Quality
Technical Debt
Management, Prioritizing,
Mitigate...
External Quality
Attributes
Maintainability, Testability,
Functionality...
Internal Quality
Attributes
Cohesion, Coupling, Size...

Refactorings
Primitive Refactorings
(renames, extracts, etc)
Composite
Refactorings
(Replace conditional with,
etc)
Approaches to
Opportunities
(metrics,
strategies/rules, search,
etc)
Support Tools

Lacerda, Guilherme & Petrillo, Fabio & Pimenta, Marcelo & Guéhéneuc, Yann-Gaël. (2020). Code Smells and
Refactoring: A Tertiary Systematic Review of Challenges and Observations. Journal of Systems and Software. 167.
110610. 10.1016/j.jss.2020.110610.

Adapter Template

Factory

Singleton

Mediator

Prototype Decorator

Builder Composite Strategy

Proxy Iterator

Bridge

Structural Behavioral

Observer

Creational

DESIGN PATTERNS

DESIGN PRINCIPLES
 Composition over inheritance - Encapsulate what varies - SOLID

 YAGNI (You ain’t gonna need it) Principle - DRY

 Meaningfull name - Keep methods, classes, files small

 Consistency - Correct constructs - Refactor often - Code Style

General repeatable solution to a
commonly occurring problem in
software design. Description or
template for how to solve a problem
that can be used in many different
situations.

Set of guidelines that helps
developers to make a good system
design.

CLEAN CODE Name, construct, structure, style,
readability

CLEAN YOUR CODE

01. Code review with pull
request

02. Static code analysis

03. Following naming
conventions

01. Setting up a CI and
CD approach

02. Implementing a coding
guideline

03. Removing duplicate
code

01. Adopting new technologies

04. Code refactoring 04. Implement test
automation

SHORT-TERM GOALS
(1 SPRINT OR LESS)

MID-TERM GOALS
(MULTIPLE SPRINTS)

LONG-TERM GOALS
(LONG PERIOD TIME, YEARS)

CREATE A PLAN TO START PAYING
BACK YOUR DEBT!

Create a branch
per feature/defect
and push new
code into it

Integrate branch
with main

Create a build
(manually)

Manual deploy to
testing
environment

Manual testing
(Regression and
exploratory
testing)

Manual deploy to
production

Create a branch
per feature/defect
and push new
code into it

All unit tests are
PASSED and code
metrics are
acceptable

Integrate branch
with main

Create automate
build

All automate
tests are PASSED
(Regression
testing)

Deploy to testing
environment

Deploy to
production

Exploratory
testing

DEFINITION OF DONE

DEFINITION OF DONE

IMPROVE QUALITY IN YOUR DELIVERY PROCESS

Definition of Done

Test Driven Development

CI / CD

Pair/Mob Programming

Agile Testing

Monitoring

Code Reviews

DevOps

Build/Release pipelines

Code Metrics

IMPROVE TECHNICAL PRACTICES

S O M E T O O L S

Y O U C A N C H E C K . . .

Static code analyzers (look for
common mistakes, catch syntax
errors in non-compiled languages,
identify code smells)

Code style checkers (ensure all
code is formatted in the same way)

Code complexity tools (guard
against overly complex logic by
calculating cyclomatic complexity)

Code coverage tools (measure how
many lines of code were exercised
by the test suite)

S O N A R Q U B E S O N A R L I N T

C O D A C Y E S L I N T

D E E P S O U R C E

WHAT WOULD YOU DO WITH
WHAT YOU LEARNED TODAY?4

NEXT STEPS

Read the Scrum Guide

Participate in webinars related with
Agile topics

Improve your technical skills

Read some books

YANET MORALES
yanet.morales@improving.com

https://www.linkedin.com/in/yanetmoralesr

¿QUESTIONS?

CONNECT WITH ME

